Ascent of Mount La Perouse

JAMES F. SEITZ

As part of our job last summer five of us had the pleasant task of climbing Mount La Perouse, a previously unclimbed mountain in the Fairweather Range, Alaska. We were members of a U. S. Geological Survey party investigating the geology of a layered gabbro body which makes up Mount La Perouse and Mount Crillon. One critical section of this gabbro body was exposed near the summit of Mount La Perouse, which meant if we were to be thorough in our investigation we would have to climb the mountain. This prospect pleased me even more than the others as I had developed a great admiration for Mount La Perouse while working in the Glacier Bay area during the previous three summers.

Our field season began June 9th when we flew with our gear from Juneau to Lituya Bay. From Lituya Bay we then back-packed the gear around to the ocean beach where a small wheel-equipped plane picked us up, one or two at a time, and flew us to our first main camp site on the beach between La Perouse Glacier and Icy Point. From this and other camps farther east on the beach we worked throughout the rest of June and all of July on and near the flanks of Mount La Perouse.

During these first two months our most memorable experience came not from climbing but from camping and working near the terminus of La Perouse Glacier, the only glacier in Alaska which extends beyond the outer coast line and discharges icebergs directly into the ocean. From the beach this glacier was an impressive sight as it loomed massively against the horizon, sloping down from the mountains and continuing across the beach to end in a cliff front three miles long and 200 feet high. We often saw masses of ice break off the face of this cliff to fall into the ocean with a tremendous splash and roar. The frequency of these discharges indicated rapid loss of ice from the glacier and a correspondingly rapid forward movement of the glacier to make up this loss. Not only is the glacier holding its own against this loss, but the front has steadily advanced during at least the last four years and the sides are now over-riding and crushing mature forests. The most

MOUNT LA PEROUSE
Summit upper right. Tremendous cliffs at the head of Brady Glacier seen from the eastern end of summit ridge of Mount Crillon in 1933

Photo, B. Washburn
striking evidence of the rapid movement of the glacier was found by Don Miller, Geological Survey, who saw ridges of sand five feet high pushed up on the beach at the margin of the glacier below high tide level. As the ridges had been formed after the last high tide, this meant the glacier had shoved them up in less than six hours.

Early in August we moved our camp to Crillon Lake to work on Mount Crillon and the upper part of Mount La Perouse. The members of the party who were to participate in this high work were Karl Stauffer, Rowland Tabor, Rolland Reid, Paul Bowen, and Ian Hendrickson as field assistants and myself as geologist. Darwin Rossman, party chief, was unable to be with us in the field at this time.

On August 10th Rossman flew out from Juneau to drop two drums of food at 5000 feet on a ridge and four drums at 7000 feet in the large basin below the main southwest cliff on Mount Crillon. On the 11th the six of us climbed up to the lower drop site and established an overnight camp. Here we found a useful tent pole and a shovel left in 1934 by Bradford Washburn’s party on their ascent of Mount Crillon. From this camp we could see rugged icefalls on either side, glaciers below spreading out to the coast, the vast sweep of the ocean a mile below us, the mountains in the distance from Mount Edgecumbe, 130 miles southeast, to Mount St. Elias, 170 miles northwest, and, dominating all, the mass of Mount Crillon rising above us.

The next day we hiked on up to our main drop site at the upper end of the 1½ by 3-mile basin and set up camp. From here we planned to work out the geology of this basin and also of the area to the east, including Mount La Perouse. A quick reconnaissance to the east revealed, however, an obstructing bergschrund on the col above camp, so we postponed work in that area and spent the following two days completing our work in the basin. Evenings we spent prospecting the bergschrund for a way across. On the third evening in camp Karl with the help of Rowland and Paul succeeded in crossing a large block of snow caught between a sheer upper wall and an overhanging lower lip of the bergschrund. Then, by gouging holds up the remaining ten feet of the upper wall, he succeeded in reaching the slope above. This opened the route to the east.
When we started for Mount La Perouse the following morning, August 15th, the temperature was below freezing and the sky, which had been predominantly clear for five days, was now turning cloudy. We crossed the bergschrund with the protection of the fixed rope placed the night before, hiked over the col, and on down into the next basin. The snow was frozen hard and we clipped along at a fast pace.* As we swung down around the base of Mount Dagelet we came into view of the crevassed upper areas of the La Perouse Glacier where it spills out of the great La Perouse-Crillon ice plateau. These crevassed areas had looked formidable on the aerial photos and they looked no more encouraging in actuality. However, the only access to the plateau lay through them, so after dropping 1500 feet from the col to the La Perouse Glacier, we were down on the crevassed area and starting our zigzag course up to the plateau. We soon discovered that we had misjudged the scale of the crevassed area and, though the crevasses were much larger than expected, so were the ridges between them. As a result we had little difficulty picking a way through the maze and on up to the smooth ice plateau.

Mount La Perouse now rose before us, a great ice-covered pyramid, as we plodded up the gentle rise of the vast plateau. Approaching the mountain, we speculated on which part offered the best route to the summit. The side towards us was steep, covered with hanging slabs of ice, and not to be climbed. The other two faces we knew from previous observation were bare of ice but even steeper and dropped off 3000 to 4000 feet to cirque basins below. This left as possible routes the north and the west ridges, with the west ridge having the advantage for us in as much as it was closer. The nearness of the west ridge decided us, so we hiked to it and climbed up onto its crest at the base of the peak. At this time Ian, who had not had previous climbing experience, elected to remain there rather than chance slowing us down on the final stint.

After some step cutting along the crest of this hard frozen snow ridge we discovered that the snow had melted back three

*To this point the route was the one followed by the Harvard Expeditions to Mt. Crillon, led by Bradford Washburn in 1933 and 1934. The Col with the bergschrund is the "South Col" referred to in *Crillon 1933*, Williams S. Child, *A.A.J.*, 146 ff.
feet from the edge of the south cliff, leaving a ledge extending almost to the summit. This was a stroke of good luck as it not only speeded up our ascent when time was vital, but it also exposed a continuous cross section of the bedrock and enabled us to collect specimens representative of the highest exposed layers. As we scrambled up this ledge, we could look down the southwest face of Mount La Perouse to the basin 3000 feet below and, farther out, to the ocean 10,000 feet below. Fifty feet from the upper end of the ridge we climbed up the snow to the left and traversed over to come out on the top snow cornice of Mount La Perouse, thus completing a first ascent of this 10,750-foot mountain. On a clear day the view would have been exceptional, but now broken clouds were everywhere and within fifteen minutes we were completely enveloped in fog.

We descended the ridge, tied in Ian, who was thoroughly chilled from standing for two hours, and followed our tracks in the fog out across the plateau. We came out below the fog as we climbed off the plateau and at the same time began sinking in to our knees in the softened snow, continuing to sink in for the remaining six miles back to camp. After being gone 15 hours we reached camp about 10 P.M. We had hiked 18 miles and climbed more than 6000 feet.

Since it was late and we were tired, we planned to sleep late the next morning before breaking camp and hiking out. However, we reckoned without the weather on that decision because we were awakened the next morning at six o’clock by the rattle of snow blowing against the tents, indicating that it was time to leave. By the time we had finished breakfast and started packing, the tents were caving in under the weight of freshly accumulated snow. Visibility was almost nil and crevasses were rapidly covering over with the blowing wet snow, so that picking our way out of the empty expanse of the snow field was tedious work. Never have I seen a bleaker picture than that made by the five figures on the ropes behind me, plastered with snow and all huddling with backs to the blizzard, the farther ones barely visible in the murk when I turned around with my back to the wind to check the compass.

As we descended out of the clouds, the snow changed to sleet and, farther down, to pouring rain, all accompanied by a high wind. The seven hours spent in going down through this mean weather
made our base camp seem more than ever the ultimate in comfort. When the storm ceased five days later, several feet of new snow had been deposited on the mountains above 5000 feet, and further work there was impossible for the year.

APPENDIX

Postscript

Had we been able to obtain the use of either a helicopter or a ski-wheel equipped airplane, our transportation and supply problems would have been greatly simplified. There are many high snow fields in this region that would make excellent landing fields. We were unable to obtain either of these specialized types of airplanes and therefore had to resort to dropping food and gasoline free fall from ordinary land and amphibian planes. For this free-fall dropping the food was packed in ten-gallon heavy steel drums, each drum containing rations for six men for one day. Dry foods were put in plastic bags, and these and the canned foods were tightly packed into the drum with corrugated cardboard and shredded paper for padding. I must add here that by the end of the summer the dry foods tasted like plastic. The food came out undamaged when dropped on snow or sand, but some cans of food were broken when the drums landed on hard ice.

For fuel we partly filled one-quart screw-top cans with gasoline. Eight of these were packed with quantities of corrugated cardboard into C-ration boxes and strapped with steel bands. This method proved successful as we had 100 per cent recovery on landings in snow and 80 percent in landings on the ice. In one instance we dropped the cans loose onto soft snow and they came out intact.

As a final note I would like to thank Bradford Washburn for his generous contribution of photographs to accompany this article. He kindly offered them when I mentioned that my photographs were in color and difficult to use for illustration. I am certainly the gainer in this as his photographs portray these mountains far more beautifully and with far greater justice than mine do.

J. F. S.